Квантово-химическое исследование биядерного комплекса меди с метиленовыми мостиками

H. Н. Бреславская, email: breslav@igic.ras.ru ¹ E. А. Уголкова, email: tipperiri@yandex.ru ¹ A. В. Просвирина, email: prosvirina.anna2017@yandex.ru ² К. В. Боженко, email: kbogenko@mail.ru ²

¹ Институт общей и неорганической химии им. Н.С.Курнакова РАН ² Российский университет дружбы народов

Аннотация. В приближениях B3LYP/LANL2DZ и B3LYP/TZV рассчитаны соединения Cu(II), в которых два хелатных комплекса с тридентатными бициклическими лигандами соединены n метиленовыми мостиками (n=0-2,4,8). Рассчитаны константы обменного взаимодействия J атомов меди для различных n и взаимных ориентаций комплексов. Исследована зависимость J от n и ее связь со спиновой плотностью на атомах меди.

Ключевые слова: Квантово-химические расчеты, биядерные комплексы меди, константы обменного взаимодействия, спиновая плотность.

Ввеление

В последнее время внимание исследователей привлекают димеры со значительным разделением парамагнитных центров. Часто в комплексах данного типа координационные полиэдры разделены протяженной группировкой атомов, непосредственно не связанных с центральным ионом. Особенно интересны биядерные комплексы, в субъединицы связаны мономерные насышенным алифатическим мостиком. Интерес обусловлен тем, что длину мостика можно варьировать в широких пределах за счет изменения числа звеньев цепочке. Из-за конформационной подвижности алифатического мостика создаются благоприятные возможности для изучения динамических эффектов [1]. Вероятно, при определенном количестве звеньев мостиков и определенной взаимной ориентации координационных полиэдров можно управлять характером и величиной магнитного обмена между атомами меди. В данной работе выполнены квантово-химические расчеты соединения Cu(II) на основе продуктов конденсации дигидразидов алифатических дикарбоновых кислот с

[©] Бреславская Н. Н., Уголкова Е.А., Просвирина А. В., Боженко К. В., 2021

ацетилацетоном, в которых два хелатных комплекса с тридентатными бициклическими лигандами соединены между собой полиметиленовыми мостиками n=0-2,4,8 L- пиридин (структурная формула на рисунке).

$$CH_3$$
 N_2
 N_2
 CH_3
 N_1
 N_2
 N_2
 N_3
 N_4
 N_2
 N_4
 N_4
 N_5
 N_5
 N_5
 N_6
 N_7
 N_8
 $N_$

Рисунок. Структурная формула биядерного комплекса меди с метиленовым мостиком

1. Методика расчета

Расчеты электронной структуры с полной оптимизацией геометрии всех систем выполнены в рамках неограниченного метода функционала плотности (DFT) в приближении B3LYP/LanL2DZ. Все расчеты выполнены по программе ORCA [2]. Рассчитанные колебательные характеризуют оптимизированные структуры энергетические минимумы. Характеристикой, определяющей ТИП обменного взаимодействия и его величину, является константа обменного взаимодействия (J). Положительные значения константы Jферромагнитному обменному соответствуют взаимодействию, а отрицательные – антиферромагнитному обменному взаимодействию. Для вычисления констант обменного взаимодействия использовался подход нарушенной симметрии (Broken Symmetry, BS) [3], расчеты выполнены в приближении B3LYP/G TZV. Данный метод состоит в расчете полной энергии высокоспинового состояния (high spin, HS), последующей локализации орбиталей и расчете с ними низкоспинового состояния с нарушенной симметрией (BS). Это позволяет точнее рассчитать энергию низкоспинового состояния в рамках стандартного однодетерминантного DFT подхода. В программе ORCA для вычисления констант *J* используются выражения, полученные из анализа спингамильтониана (модель Гейзенберга – Дирака – Ван-Флека) [3-7]:

$$J_{1} = -\frac{\left(E_{HS} - E_{BS}\right)}{S_{max}^{2}}$$

$$J_{2} = -\frac{\left(E_{HS} - E_{BS}\right)}{S_{max}\left(S_{max} + 1\right)}$$

$$J_{3} = -\frac{\left(E_{HS} - E_{BS}\right)}{\left\langle S^{2}\right\rangle_{HS} - \left\langle S^{2}\right\rangle_{BS}}$$

С их помощью получаются практически одинаковые значения константы J, различающиеся на $1-2~{\rm cm}^{-1}$. Значения константы обменного взаимодействия, полученные по формуле J_3 , являются наиболее теоретически обоснованными, поэтому именно их мы принимаем в дальнейших рассуждениях за рассчитанные значения константы J. Ранее этот метод успешно применялся для изучения магнитных свойств меди в комплексных соединениях азометинов N-аминотриазолтионов [8]. Спиновая плотность рассчитана в рамках стандартной процедуры анализа заселенностей орбиталей по Малликену, инкорпорированной в программу ORCA.

2. Результаты расчетов и их обсуждение

На рисунке представлена структурная формула рассчитанного биядерного комплекса Cu(II). Расстояние между атомами меди варьируется от 6.89 Å (n=0) до 13.2 Å (n=8). Геометрия первой координационной сферы атомов меди остается практически неизменной с увеличением длины метиленового мостика.

В табл. 1 приведены рассчитанные значения полной энергии ($E_{\rm total}$) основного триплетного состояния в приближении B3LYP/LanL2DZ, а также рассчитанные в приближении B3LYP/G TZV значения $E_{HS}-E_{BS}$ и константы обменного взаимодействия J. Для всех структур значения $\left\langle S^{\,2} \right\rangle_{HS} = \left\langle S^{\,2} \right\rangle_{BS} = 1.01$.

Как видно из табл.1, при взаимном вращении рассмотренных хелатных комплексов увеличивается значение константы обменного взаимодействия. Для четных значений n=0,2,4,8 мономерные субъединицы молекулы находятся в одной плоскости. Для n=1 минимуму полной энергии соответствует взаимный поворот

мономерных частей молекулы таким образом, что угол ССС в метиленовом мостике равен порядка 112°. Такой поворот соответствует резкому увеличению по модулю константы обменного взаимодействия, то есть более ярко выраженному антиферромагнитному обмену.

Таблина 1

Рассчитанные значения расстояния между атомами меди R_{Cu-Cu} (Å), полной энергии (E_{total} , a.u.) основного триплетного состояния, значения E_{HS} – E_{BS} и констант обменного

взаимодействия J_1 , J_2 и J_3 (cm^{-1})

	R_{Cu-Cu}	$E_{\rm total}$	$E_{HS} - E_{BS}$	J_1	J_2	J_3
n = 0	6.893	-1873.402590	0.529	-0.53	-0.26	-0.53
n = 1	7.428	-1912.687584	5.887	-5.89	-2.94	-5.88
n = 2	8.910	-1951.970939	-0.100	0.10	0.05	0.10
n = 4	9.879	-2030.525967	0.059	-0.06	-0.03	-0.06
n = 8	13.233	-2187.636048	0.025	0.02	-0.01	-0.02

В табл. 2 и 3 представлены рассчитанные значения спиновой плотности и заряды по Малликену. Нумерация атомов соответствует нумерации в структурной формуле, приведенной выше. Спиновая плотность на атомах меди и атомах первой координационной сферы с увеличением длины метиленового мостика практически не изменяется. Рассчитанные значения зарядов (по Малликену) на атомах меди уменьшаются с ростом n.

Таблица 2 Рассчитанные значения спиновой плотности на атомах меди и атомах первой координационной сферы в приближении ВЗLYP/G TZV

	n = 0	n = 1	n = 2	n = 4	n = 8
Cu _{1,2}	0.552	0.549	0.549	0.547	0.549
Ο ₁	0.104	0.107	0.108	0.109	0.109
O 2	0.131	0.127	0.125	0.125	0.125
N ₁	0.064	0.062	0.062	0.062	0.062
N ₂	0.138	0.140	0.140	0.141	0.140

Рассчитанные значения зарядов на атомах меди и атомах первой координационной сферы (по Малликену) в приближении B3LYP/G

- -						
	n = 0	n = 1	n = 2	n = 4	n = 8	
$Cu_{1,2}$	0.631	0.605	0.614	0.606	0.604	
Ο ₁	-0.502	-0.507	-0.506	-0.507	-0.506	
O 2	-0.493	-0.512	-0.520	-0.524	-0.524	
N ₁	-0.287	-0.282	-0.283	-0.282	-0.280	
N ₂	-0.348	-0.357	-0.358	-0.359	-0.361	

Заключение

Показано, что ДЛЯ n = 0.2.4.8основному состоянию рассмотренных систем отвечает расположение пиридиновых колец в одной плоскости. Причем для n = 0, 4, 8имеет место слабое антиферромагнитное взаимодействие атомов меди. И только для комплекса с константы обменного n = 2знак взаимодействия становится положительным, что отвечает ферромагнитному обменному взаимодействию этих атомов. Найдено, что для n=1 при повороте комплексов друг относительно друга таким образом, что угол $\angle CCC$ в метиленовом мостике равен порядка 112°, антиферромагнитное ярко обменное взаимодействие становится более выраженным. Высказано предположение, что для нечетных значений п в случае обнаружения комплексов данного типа можно ожидать столь же ярко выраженного обменного взаимодействия атомов меди. Это в свою очередь позволяет надеяться, что, меняя количество метиленовых мостиков, можно управлять обменным взаимодействием в таких комплексах. Авторы выражают признательность Суперкомпьютерному Воронежского государственного университета предоставленную возможность провести расчеты по теме работы на суперкомпьютере ВГУ.

Список литературы

- 1. Ларин, Г. М. Обменные взаимодействия в биядерных комплексах меди(II) с ацилдигидразонами предельных дикарбоновых кислот / Г. М. Ларин, В. В. Минин, В. Ф. Шульгин // Успехи химии. 2008. N o 5 (77). С. 476-490.
- 2. Neese, F. ORCA An ab initio, DFT and semiemperical programpackage 2.6.35 ed. University of Bonn: Bonn, Germany, 2008.

- 3. Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers / Louis. Noodleman // Chemical Physics. –1981. Vol. 74. P. 5737-5743.
- 4. Noodleman, L. Ligand Spin Polarization and Antiferromagnetic Coupling in Transition-Metal Dimers / L.Noodleman, E.R. Davidson // Chemical Physics. 1986. Vol. 109. P.131-143.
- 5. Bencini, A. X-alpha-SW calculations of the electronic structure and magnetic properties of weakly coupled transition-metal clusters. The [Cu2Cl6]2- dimers / A. Bencini, D. Gatteschi // J. Am. Chem. Soc. 1986. Vol. 19. P. 5763- 5771.
- 6. Yamaguchi, K. Ab-Initio Molecular Orbital Studies of Structure and Reactivity of Transition Metal-OXO Compounds. / K. Yamaguchi, Y. Takahara, T. Fueno // Applied Quantum Chemistry / Ed. by Vedene H. Smith, Henry F. Schaefer, Keiji Morokuma. Dordrecht: Springer Netherlands, 1986. P. 155–184.
- 7. Ab initio computations of effective exchange integrals for H-H, H-He-H and Mn2O2 complex: comparison of broken-symmetry approaches / T. Soda et al. // Chem. Phys. Lett. 2000. Vol. 319 (3-4). P. 223–230.
- 8. Строение и магнетохимические свойства медных комплексных соединений азометинов N-аминотриазолтионов / И. С. Васильченко [и др.], // Координационная химия. -2010. -№ 3(36). -С. 1-9.